发表国际期刊论文
[28].Weiyong Wang, Hongyang Zhou, Lei Xu. Creep buckling of high strength Q460 steel columns at elevated temperatures. Journal of Constructional Steel Research 157 (2019) 414–425. (SCI,EI收录)
[27].Huanting Zhou, Weiyong Wang, Kang Wang, Lei Xu. Mechanical properties deterioration of high strength steels after high temperature exposure. Constructions and Building Materials, 2019,199:664-675. (SCI,EI收录)
[26].Zhou Xuhong, Shi Yu, Xu Lei, Xiaomei Yao, Wang Weiyong. A simplified method to evaluate the flexural capacity of lightweight cold-formed steel floor system with oriented strand board subfloor. Thin-walled structures, 2019,134:40-51. (SCI,EI收录)
[25].Weiyong Wang, Yue Xia,Guoqiang Li. Fire resistance studies on high strength steel structures, International journal of high-rise buildings,2018,7(4):287-298.
[24].Wang Weiyong, Zhang Linbo, Ge Yong. Behaviour of restrained high strength steel columns at elevated temperature. Journal of Constructional Steel Research 2018,148: 251–264.(SCI,EI收录)
[23].Wang Weiyong, Zhang Linbo, He Pingzhao. A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect. International Journal of Steel Structures,2018,18(5):1497-1507.(SCI,EI收录)
[22]. Wang Weiyong, Zhou Hongyang, Zhou Yichao,Lei Xu. An approach for predicting fire resistance of high strength Q460 steel beams considering un-uniform temperature distribution. Fire technology, 2018,54(2):437-460. (SCI,EI收录)
[21]. Wang Weiyong, Wang Kang,Kodur VK, Wang Bin. Mechanical properties of high strength Q690 steel at elevated temperature. Journal of Materials in Civil Engineering, 2018, 30(5):04018062.(SCI,EI收录)
[20].Wang W.Y., Qin S.Q., Kodur V.K.R. Wang Yuhang. Experimental study on residual stress in welded box-sections after high temperature exposure. Advanced steel construction, 2018,14(1):73-89.(SCI,EI收录)[19].Wang W.Y.,Yan S.H. Liu J.P. Test on temperature induced creep in high strength Q460 steel. Materials & Structures,2017,(2): 50-68. (SCI,EI收录)
[18].Wang W.Y., Wang K., Engelhardt M.D.,Li G.Q. Behavior of steel-concrete partially composite beams subjected to fire—Part 2:Analytical study. Fire Technology, 2017, 53(8):1147-1170. (SCI,EI收录)
[17].Wang W.Y., Engelhardt M.D., Li G.Q., Huang G.S. Behavior of steel-concrete partially composite beams subjected to fire—Part 1:Experimental study. Fire Technology, 2017, 53(8):1039-1058. (SCI,EI收录)
[16].Wang W.Y., Liu T.Z. Experimental and numerical study on post-fire behavior of high-strength Q460 steel columns. Advanced in Structural Engineering, 2016,19(12):1-16. (SCI,EI收录)
[15].Wang W.Y., Qin S.Q. Experimental investigation of residual stresses in thin-walled welded H-sections after fire exposure. Thin-walled Structures, 2016, (101):109-119. (SCI,EI收录)
[14].Wang, W., Yan, S., and Kodur, V. Temperature Induced Creep in Low-Alloy Structural Q345 Steel. J. Mater. Civ. Eng., 2016, 28(6): 06016003.(SCI,EI收录)
[13].Wang W.Y.,Liu T.Z. Liu J.P. Experimental study on post fire mechanical properties of high strength Q460 steel. Journal of Constructional Steel Research, 2015,114:100-109.((SCI,EI收录)
[12].Wang W.Y., Li G.Q., Ge Y. Residual stress study on welded section of high strength Q460 steel after fire exposure. Advanced steel constructions,2015,11(2):150-164.((SCI,EI收录)
[11].Wang W.Y., Kodur VK, Yang X.C., Li G.Q. Experimental study on local buckling of axially compressed steel stub columns at elevated temperatures; Thin-walled structures, 2014,82:33-45(SCI,EI收录)
[10].Wang W.Y.,Li G.Q. An approach for evaluating fire resistance of high strength Q460 steel columns. Frontier of Structural and Civil Engineering, 2014, 8(1):26-35.
[9].Wang W.Y., Ohmiya Y., Ma G.F. Fire resistance study of axially loaded high strength steel columns. Procedia Engineering,2013,62:690-701.(ISTP收录)
[8].Wang W.Y., Bing LIU, Kodur V.K. Effect of temperature on strength and elastic modulus of high strength steel. Journal of Materials in Civil Engineering, 2013,25(2):174-182.(SCI,EI收录)
[7].Wang W.Y., Li G.Q., Kodur V.K. An Approach for Modeling Fire Insulation Damage in Steel Columns, Journal of Structural Engineering, 2013,139(4):491-503.(SCI,EI收录)
[6].Li G.Q., Wang W.Y. A simplified approach for fire-resistance design of steel-concrete composite beams, Steel & Composite Structures,2013,14(3):295-312.(SCI,EI收录)
[5].Wang W.Y., Li G.Q. Fire-resistance study of steel columns with partial fire protection damage. Fire Safety Journal, 2009, 44(8):1088-1094.(SCI,EI收录)
[4].Wang W.Y., Li G.Q. Behavior of steel columns in a fire with partial damage to fire protection. Journal of Constructional Steel Research, 2009, 65(6): 1392-1400.(SCI,EI收录)
[3].Li G.Q., Wang W.Y., Chen S.W. A simple approach for modeling fireresistance of steel columns with locally damaged fire retardant coating. Engineering Structures, 2009,31(3):617-622(SCI,EI收录)
[2].Wang W.Y., Li G.Q., Dong Y.L. A practical approach for fire-resistance design of extended end-plate joints. Journal of Constructional Steel Research, 2008, 64(12):1456-1462.(SCI,EI收录)
[1].Wang W.Y., Li G.Q., Dong Y.L. Experimental study and spring-component modeling of extended end-plate joints in fire. Journal of Constructional Steel Research, 2007, 63 (8):1127-1137(SCI,EI收录)